

(12) United States Patent

Guo et al.

US 9,047,919 B1 (10) Patent No.: Jun. 2, 2015 (45) Date of Patent:

(54) DISK DRIVE INITIALIZING SERVO READ CHANNEL BY READING DATA PRECEDING SERVO PREAMBLE DURING ACCESS **OPERATION**

(71) Applicant: Western Digital Technologies, Inc.,

Irvine, CA (US)

(72) Inventors: Guoxiao Guo, Irvine, CA (US);

Richard K. Wong, San Jose, CA (US); Davide Giovenzana, Longmont, CO (US); John W. Vanlaanen, Louisville, CO (US); Teik EE Yeo, Trabuco Canyon, CA (US); **Jie Yu**, Irvine, CA (US)

(73) Assignee: Western Digitial Technologies, Inc.,

Irvine, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 13/797,953

(22) Filed: Mar. 12, 2013

(51) **Int. Cl.**

G11B 5/09 (2006.01)G11B 20/10 (2006.01)G11B 5/596 (2006.01)

CPC G11B 20/10222 (2013.01); G11B 5/59616 (2013.01)

(58) Field of Classification Search

See application file for complete search history.

(56)References Cited

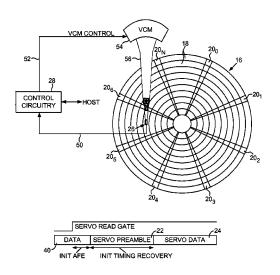
U.S. PATENT DOCUMENTS

5,784,216 A	7/1998	Zaharris
5,784,219 A	7/1998	Genheimer
5 963 387 A *	10/1999	Son 360/49

6,009,549 A	12/1999	Bliss et al.
6,014,283 A	1/2000	Codilian et al.
6,052,076 A	4/2000	Patton, III et al.
6,052,250 A	4/2000	Golowka et al.
6,067,206 A	5/2000	Hull et al.
6,078,453 A	6/2000	Dziallo et al.
6,091,564 A	7/2000	Codilian et al.
6,094,020 A	7/2000	Goretzki et al.
6,101,065 A	8/2000	Alfred et al.
6,104,153 A	8/2000	Codilian et al.
6,122,133 A	9/2000	Nazarian et al.
6,122,135 A	9/2000	Stich
6,141,175 A	10/2000	Nazarian et al.
6,160,368 A	12/2000	Plutowski
6,181,502 B1	1/2001	Hussein et al.
6,195,222 B1	2/2001	Heminger et al.
6,198,584 B1	3/2001	Codilian et al.
6,198,590 B1	3/2001	Codilian et al.
6,204,988 B1	3/2001	Codilian et al.
	(Con	tinued)

OTHER PUBLICATIONS

Guoxiao Guo, et al., U.S. Appl. No. 13/418,966, filed Mar. 13, 2012, 21 pages.


(Continued)

Primary Examiner — Dismery Mercedes

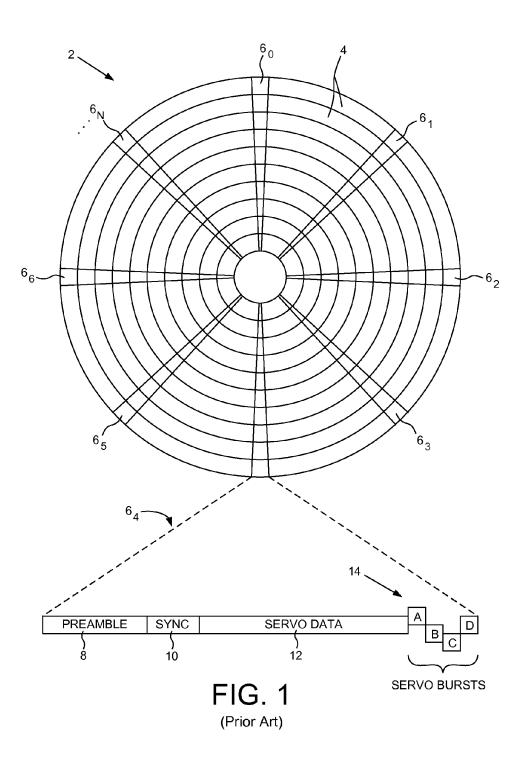
ABSTRACT (57)

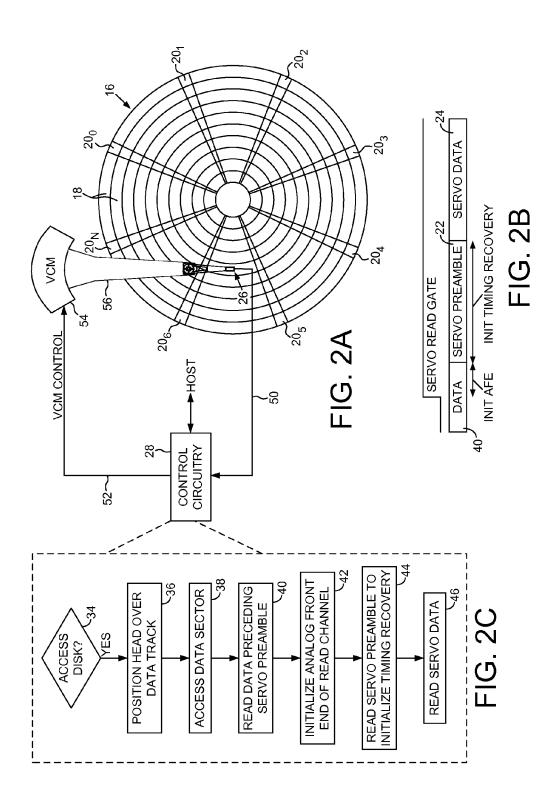
A disk drive is disclosed comprising a disk having a plurality of data tracks defined by servo sectors, where each data track comprises a plurality of data sectors, and each servo sector comprises a servo preamble and servo data. The disk drive further comprises a head comprising a read element and a write element, and a servo read channel comprising an analog front end and a timing recovery circuit. During an access operation, data preceding the servo preamble of a first servo sector in the first data track is read in order to initialize the analog front end of the servo read channel. At least part of the servo preamble is read to initialize the timing recovery circuit of the servo read channel, and at least part of the servo data of the servo sector is read using the timing recovery circuit.

14 Claims, 3 Drawing Sheets

US 9,047,919 B1 Page 2

(56)	Referei	ices Cited		6,954,324 6,958,881		10/2005	Tu et al. Codilian et al.
U.S	. PATENT	DOCUMENTS		6,963,465	B1	11/2005	Melkote et al.
6 2 42 222 P.I	6/2001	7711' · · · · · · · · · · · · · · · · · ·		6,965,488 6,967,458		11/2005	Bennett et al.
6,243,223 B1 6,265,868 B1		Elliott et al. Richter		6,967,811			Codilian et al.
6,281,652 B1		Ryan et al.		6,970,319			Bennett et al.
6,285,521 B1		Hussein		6,972,539			Codilian et al.
6,292,320 B1		Mason et al. Nazarian et al.		6,972,540 6,972,922		12/2005	Wang et al. Subrahmanyam et al.
6,310,742 B1 6,320,718 B1	11/2001	Bouwkamp et al.		6,975,480		12/2005	Codilian et al.
6,342,984 B1	1/2002	Hussein et al.		6,977,789		12/2005	
6,347,018 B1 6,369,972 B1		Kadlec et al.		6,980,389 6,987,636			Kupferman Chue et al.
6,369,974 B1		Codilian et al. Asgari et al.		6,987,639		1/2006	
6,462,896 B1	10/2002	Codilian et al.		6,989,954			Lee et al.
6,469,853 B1		Satoh 3	360/48	6,992,848 6,992,851		1/2006	Agarwal et al.
6,476,996 B1 6,484,577 B1	11/2002 11/2002	Bennett		6,992,852			Ying et al.
6,493,169 B1	12/2002	Ferris et al.		6,995,941			Miyamura et al.
6,496,324 B1		Golowka et al.		6,999,263 6,999,267			Melkote et al. Melkote et al.
6,498,698 B1 6,507,450 B1		Golowka et al. Elliott		7,006,320			Bennett et al.
6,534,936 B2		Messenger et al.		7,016,134			Agarwal et al.
6,538,839 B1	3/2003			7,023,637 7,023,640			Kupferman Codilian et al.
6,545,835 B1 6,549,359 B1		Codilian et al. Bennett et al.		7,023,040			Subrahmanyam et al.
6,549,361 B1		Bennett et al.		7,027,257	B1	4/2006	Kupferman
6,560,056 B1	5/2003			7,035,026 7,046,472			Codilian et al. Melkote et al.
6,568,268 B1 6,574,062 B1		Bennett Bennett et al.		7,040,472			Chue et al.
6,577,465 B1		Bennett et al.		7,050,254	B1		Yu et al.
6,614,615 B1		Ju et al.		7,050,258			Codilian
6,614,618 B1 6,636,377 B1		Sheh et al. Yu et al.		7,054,098 7,057,836			Yu et al. Kupferman
6,680,609 B1		Fang et al.		7,061,714	В1	6/2006	Yu
6,690,536 B1	2/2004	Ryan		7,064,918			Codilian et al.
6,693,764 B1		Sheh et al. Codilian et al.		7,068,451 7,068,459			Wang et al. Cloke et al.
6,707,635 B1 6,710,953 B1		Vallis et al.		7,068,461	B1	6/2006	Chue et al.
6,710,966 B1	3/2004	Codilian et al.		7,068,463		6/2006	
6,714,371 B1		Codilian		7,088,547 7,095,577			Wang et al. Codilian et al.
6,714,372 B1 6,724,564 B1		Codilian et al. Codilian et al.		7,095,579	B1	8/2006	Ryan et al.
6,731,450 B1	5/2004	Codilian et al.		7,110,208			Miyamura et al.
6,735,041 B1		Codilian et al.		7,110,214 7,113,362			Tu et al. Lee et al.
6,738,220 B1 6,747,837 B1		Codilian Bennett		7,113,365	B1	9/2006	Ryan et al.
6,760,186 B1		Codilian et al.		7,116,505 7,119,537			Kupferman
6,788,483 B1		Ferris et al.		7,119,337		10/2006	Che et al. Bennett
6,791,785 B1 6,795,268 B1	9/2004	Messenger et al. Rvan		7,158,329	B1	1/2007	Ryan
6,819,518 B1	11/2004	Melkote et al.		7,180,703			Subrahmanyam et al.
6,826,006 B1		Melkote et al. Patton, III		7,184,230 7,196,864			Chue et al. Yi et al.
6,826,007 B1 6,847,502 B1		Codilian		7,199,966	В1	4/2007	Tu et al.
6,850,383 B1	2/2005	Bennett		7,203,021			Ryan et al.
6,850,384 B1		Bennett Dunn et al.		7,209,321 7,212,364		5/2007	Bennett Lee
6,865,042 B2 6,867,944 B1	3/2005			7,212,374			Wang et al
6,876,508 B1	4/2005	Patton, III et al.		7,215,504			Bennett
6,882,486 B1		Kupferman		7,224,546 7,248,426			Orakcilar et al. Weerasooriya et al.
6,882,496 B1 6,885,514 B1		Codilian et al. Codilian et al.		7,251,098		7/2007	Wang et al.
6,900,958 B1		Yi et al.		7,253,582			Ding et al.
6,900,959 B1		Gardner et al. Wang et al.		7,253,989 7,265,933			Lau et al. Phan et al.
6,903,897 B1 6,914,740 B1		Wang et al. Tu et al.		7,289,288	B1	10/2007	Tu
6,914,743 B1	7/2005	Narayana et al.		7,298,574			Melkote et al.
6,920,004 B1		Codilian et al.		7,301,717 7,304,819			Lee et al. Melkote et al.
6,924,959 B1 6,924,960 B1		Melkote et al. Melkote et al.		7,304,819			Bennett
6,924,961 B1		Melkote et al.		7,330,327			Chue et al.
6,934,114 B1		Codilian et al.		7,333,280			Lifchits et al.
6,934,135 B1	8/2005			7,333,290 7,339,761			Kupferman Tu et al.
6,937,420 B1 6,937,423 B1		McNab et al. Ngo et al.		7,365,932			Bennett
6,950,259 B2		Osafune		7,388,728			Chen et al.
6,952,322 B1	10/2005	Codilian et al.		7,391,583	В1	6/2008	Sheh et al.


US 9,047,919 B1 Page 3


(56)		Referen	ices Cited	7,916,416 B1		Guo et al.
	1151	PATENT	DOCUMENTS	7,916,420 B1 7,916,422 B1		McFadyen et al. Guo et al.
	0.5.	AILINI	DOCUMENTS	7,929,238 B1		Vasquez
7,391,584	B1	6/2008	Sheh et al.	7,961,422 B1		Chen et al.
7,433,143			Ying et al.	7,974,035 B2 *		Bliss et al
7,440,210		10/2008		7,982,989 B1 7,982,990 B1*		Shi et al. Yu et al 360/39
7,440,225 7,450,334			Chen et al. Wang et al.	8,000,053 B1		Anderson
7,450,336			Wang et al.	8,031,423 B1		Tsai et al.
7,453,661	B1	11/2008	Jang et al.	8,054,022 B1		Ryan et al.
7,457,071		11/2008		8,059,357 B1 8,059,360 B1		Knigge et al. Melkote et al.
7,466,509 7,468,855			Chen et al. Weerasooriya et al.	8,072,703 B1		Calaway et al.
7,477,471			Nemshick et al.	8,077,428 B1		Chen et al.
7,480,116			Bennett	8,078,901 B1 8,081,395 B1	12/2011 12/2011	Meyer et al.
7,489,464 7,492,546			McNab et al. Miyamura	8,085,020 B1	12/2011	
7,495,857			Bennett	8,116,023 B1		Kupferman
7,499,236	5 B1		Lee et al.	8,145,934 B1		Ferris et al.
7,502,192			Wang et al.	8,179,626 B1 8,189,286 B1	5/2012	Ryan et al. Chen et al.
7,502,195 7,502,197		3/2009	Wu et al.	8,213,106 B1		Guo et al.
7,505,223			McCornack	8,254,222 B1	8/2012	
7,529,050	B2	5/2009	Shen et al.	8,300,348 B1		Liu et al.
7,529,320		5/2009	Byrne et al 375/326	8,315,005 B1 8,320,069 B1		Zou et al. Knigge et al.
7,542,225 7,548,392			Ding et al. Desai et al.	8,351,174 B1		Gardner et al.
7,551,379			Yu et al.	8,358,114 B1		Ferris et al.
7,551,390	B1		Wang et al.	8,358,145 B1 8,390,367 B1		Ferris et al. Bennett
7,558,016 7,573,670			Le et al. Ryan et al.	8,395,858 B1 *		Han et al 360/51
7,576,941			Chen et al.	8,432,031 B1	4/2013	Agness et al.
7,580,212	2 B1	8/2009	Li et al.	8,432,629 B1		Rigney et al.
7,583,470			Chen et al.	8,451,697 B1 8,482,873 B1		Rigney et al. Chue et al.
7,586,704 7,595,954			Annampedu 360/39 Chen et al.	8,498,076 B1		Sheh et al.
7,602,575			Lifchits et al.	8,498,172 B1		Patton, III et al.
7,616,399			Chen et al.	8,508,878 B1* 8,508,881 B1		Zou et al 360/51 Babinski et al.
7,619,844 7,626,782		11/2009 12/2009		8,531,798 B1		Xi et al.
7,630,162			Zhao et al.	8,537,486 B2	9/2013	Liang et al.
7,639,447		12/2009	Yu et al.	8,542,455 B2		Huang et al.
7,656,604			Liang et al.	8,553,351 B1 8,564,899 B2		Narayana et al. Lou et al.
7,656,607 7,660,067			Bennett Ji et al.	8,576,506 B1		Wang et al.
7,663,835	B1		Yu et al.	8,605,382 B1		Mallary et al.
7,675,707	B1		Liu et al.	8,605,384 B1 8,610,391 B1		Liu et al. Yang et al.
7,679,854 7,688,534			Narayana et al. McCornack	8,611,040 B1	12/2013	
7,688,538			Chen et al.	8,619,385 B1	12/2013	Guo et al.
7,688,539	B1	3/2010	Bryant et al.	8,630,054 B2		Bennett et al.
7,697,233			Bennett et al.	8,630,059 B1 8,634,154 B1		Chen et al. Rigney et al.
7,701,661 7,710,676		5/2010	Bennett Chue	8,634,283 B1	1/2014	Rigney et al.
7,715,138			Kupferman	8,643,976 B1		Wang et al.
7,724,464			Kisaka et al 360/77.01	8,649,121 B1 8,654,466 B1		Smith et al. McFadyen
7,729,079 7,733,189		6/2010	Bennett	8,654,467 B1		Wong et al.
7,746,592			Liang et al.	8,665,546 B1		Zhao et al.
7,746,594	B1	6/2010	Guo et al.	8,665,551 B1		Rigney et al.
7,746,595			Guo et al.	8,670,206 B1 8,687,312 B1	4/2014	Liang et al.
7,760,461 7,800,853			Bennett Guo et al.	8,693,123 B1		Guo et al.
7,800,856			Bennett et al.	8,693,134 B1		Xi et al.
7,800,857			Calaway et al.	8,699,173 B1 8,711,027 B1		Kang et al. Bennett
7,839,591 7,839,595			Weerasooriya et al. Chue et al.	8,711,506 B1		Giovenzana et al.
7,839,600			Babinski et al.	8,717,696 B1	5/2014	Ryan et al.
7,843,662	2 B1	11/2010	Weerasooriya et al.	8,717,699 B1	5/2014	
7,852,588			Ferris et al.	8,717,704 B1 8,724,245 B1		Yu et al. Smith et al.
7,852,592 7,864,481			Liang et al. Kon et al.	8,724,243 B1 8,724,253 B1		Liang et al.
7,864,482			Babinski et al.	8,724,524 B2		Urabe et al.
7,869,155	B1	1/2011	Wong	8,737,008 B1		Watanabe et al.
7,876,522			Calaway et al.	8,737,013 B2		Zhou et al.
7,876,523 7,907,361			Panyavoravaj et al. Deng et al.	8,743,495 B1 8,743,503 B1		Chen et al. Tang et al.
7,916,415		3/2011	č	8,743,504 B1		Bryant et al.

US 9,047,919 B1

Page 4

(56)	6) References Cited			2012/0284493 A1 2013/0120870 A1		Lou et al. Zhou et al.		
	U.S. PAT	ΓENT	DOCUMENTS	2013/0120870 A1 2013/0148240 A1 2013/0250447 A1	6/2013			
2004/024345	5 A1* 12	/2004	Liang et al. Smith	OTHER PUBLICATIONS				
2010/003508	5 A1 2	/2010	Annampedu	Guoxiao Guo, et al., l 26 pages.	J.S. Appl. 1	No. 13/614,894, filed Sep. 13, 2012,		
2011/018836 2012/028130			Maeto	* cited by examine	r			

Jun. 2, 2015

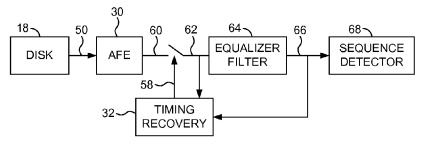
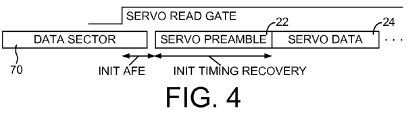



FIG. 3

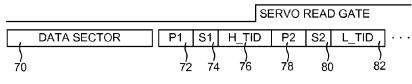
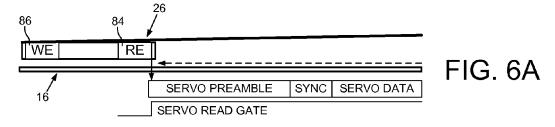
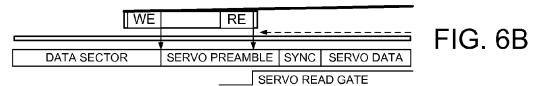
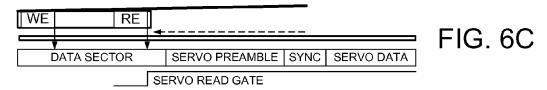





FIG. 5

DISK DRIVE INITIALIZING SERVO READ CHANNEL BY READING DATA PRECEDING SERVO PREAMBLE DURING ACCESS OPERATION

BACKGROUND

Disk drives comprise a disk and a head connected to a distal end of an actuator arm which is rotated about a pivot by a voice coil motor (VCM) to position the head radially over the disk. The disk comprises a plurality of radially spaced, concentric tracks for recording user data sectors and servo sectors. The servo sectors comprise head positioning information (e.g., a track and wedge address) which is read by the head and processed by a servo control system to control the actuator arm as it seeks from track to track as well as establish rotational position of the head.

FIG. 1 shows a prior art disk format 2 as comprising a number of servo tracks 4 defined by servo sectors $\mathbf{6}_0$ - $\mathbf{6}_N$ recorded around the circumference of each servo track. Each 20 servo sector 6, comprises a preamble 8 for storing a periodic pattern, which allows proper gain adjustment and timing synchronization of the read signal, and a sync mark 10 for storing a special pattern used to symbol synchronize to a servo data field 12. The servo data field 12 stores coarse head positioning 25 information, such as a servo track address (Gray coded) and wedge address, used to position the head over a target data track during a seek operation and monitor the rotational position with respect to a reference index-wedge. Each servo sector 4, further comprises groups of servo bursts 14 (A, B, C, 30 D in the example shown), which are recorded with precise intervals and offsets relative to the servo track centerlines. The servo bursts 14 provide fine head position information used for centerline tracking while accessing a data track during write/read operations.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a prior art disk format comprising a plurality of servo tracks defined by embedded servo sectors.

FIG. **2**A shows a disk drive according to an embodiment comprising a head actuated over a disk.

FIG. 2B illustrates an embodiment wherein a servo gate is opened early over data preceding a servo preamble.

FIG. 2C is a flow diagram according to an embodiment 45 wherein during an access operation, data preceding the servo preamble is read in order to initialize an analog front end of a servo read channel.

FIG. 3 shows a servo read channel according to an embodiment comprising an analog front end and a timing recovery 50 circuit

FIG. 4 shows an embodiment wherein the data preceding the servo preamble comprises data of a data sector in a data track.

FIG. **5** shows an embodiment wherein the data preceding 55 the servo preamble comprises servo data in the servo sector.

FIGS. 6A-6C illustrate an embodiment wherein at least part of a servo preamble is overwritten with data of a data sector during a write operation in order to eliminate the gap between the data sector and the servo sector.

DETAILED DESCRIPTION

FIG. 2A shows a disk drive according to an embodiment comprising a disk 16 having a plurality of data tracks 18 65 defined by servo sectors 20_0 - 20_N , where each data track comprises a plurality of data sectors, and each servo sector com-

2

prises a servo preamble 22 and servo data 24 (FIG. 2B). The disk drive further comprises a head 26 comprising a read element and a write element, and control circuitry 28 comprising a servo read channel (FIG. 3) including an analog front end (AFE) 30 and a timing recovery circuit 32. The control circuitry 28 is operable to execute the flow diagram of FIG. 2C, wherein during an access operation (block 34) the head is positioned over a first data track (block 36), and during a revolution of the disk, a first data sector of the first data track is accessed (block 38). After accessing the first data sector, data 40 (FIG. 2B) preceding the servo preamble 22 of a first servo sector in the first data track is read (block 40) in order to initialize the AFE 30 of the servo read channel (block 42). At least part of the servo preamble 22 is read to initialize the timing recovery circuit 32 of the servo read channel (block 44), and at least part of the servo data 24 of the servo sector is read using the timing recovery circuit (block 46).

In the embodiment of FIG. 2A, the control circuitry 28 processes a read signal 50 emanating from the head 26 to demodulate the servo sectors 20_0 - 20_N and generate a position error signal (PES) representing an error between the actual position of the head and a target position relative to a target track. The control circuitry 28 filters the PES using a suitable compensation filter to generate a control signal 52 applied to a voice coil motor (VCM) 54 which rotates an actuator arm 56 about a pivot in order to actuate the head 26 radially over the disk 18 in a direction that reduces the PES. The servo sectors 20_0 - 20_N may comprise any suitable head position information, such as a track address for coarse positioning and servo bursts for fine positioning. The servo bursts may comprise any suitable pattern, such as an amplitude based servo pattern (FIG. 1) or a phase based servo pattern.

During an access operation (write/read), the control circuitry 28 seeks the head 26 to a target data track, and then 35 tracks a centerline of the data track in response to the servo sectors 20_0 - 20_N . In order to demodulate a servo sector 20_i , the control circuitry 28 opens a servo gate, and in an embodiment illustrated in FIG. 2B, the servo gate is opened when the head 26 is over data 40 that precedes the servo preamble 22 in order 40 to initialize the AFE 30 of the servo read channel (FIG. 3). When the head 26 reaches the servo preamble 22, the AFE 30 has been properly initialized so that the timing recovery circuit 32 may be synchronized in response to the servo preamble 22. This allows the length of the servo preamble 22 to be reduced as compared to a prior art technique of using the beginning of the servo preamble 22 to initialize the AFE 30. Reducing the length of the servo preamble 22 can improve the format efficiency and can increase the overall capacity of the disk 18.

In the embodiment of FIG. 3, the AFE 30 comprises suitable circuitry for preconditioning the read signal 50, such as an analog filter (e.g., a low pass filter) for shaping the read signal 50 toward a desired response (e.g., a partial response). The timing recovery circuit 32 generates a sampling clock 58 for use in sampling the analog signal 60 output by the AFE 30 to generate signal samples 62. The signal samples 62 may be equalized by an equalizer filter 64 in order to further shape the signal samples 62 toward the desired response, and the equalized signal samples 66 may be processed by a sequence detector 68 to detect the servo data 24.

In one embodiment, the timing recovery circuit 32 generates the sampling clock 58 synchronous to the data rate of the servo data (i.e., the analog signal 60 is sampled synchronously). Accordingly in this embodiment the servo preamble 22 is processed in order to initially synchronize the timing recovery circuit 32 prior to reading the servo data 24. In one embodiment, the timing recovery circuit 32 executes a zero-

phase start operation wherein the phase of a phase-locked loop (PLL) is initialized based on the first few signal samples of the servo preamble 22. Once the phase of the PLL has been initialized, the remaining signal samples of the servo preamble 22 are processed to further lock the PLL to the fre- 5 quency/phase of the servo preamble 22. Accordingly, in one embodiment the control circuitry 28 enables the servo read gate (FIG. 2B) to begin initializing the AFE 30, and then enables another internal gate to enable the timing recovery circuit 32 to execute the zero-phase start operation. Other 10 embodiments may employ interpolated timing recovery (ITR), wherein the analog signal 60 output by the AFE 30 may be sampled asynchronously, and the asynchronous signal samples interpolated to generate the synchronous signal samples. An embodiment employing an ITR type timing 15 recovery may also execute a zero-phase start operation at the beginning of the servo preamble 22.

At least some of the components of the servo read channel shown in FIG. 3 may also be used to read the data sectors of a data track. In one embodiment, some of the components of 20 the read channel may be configured based on whether the read channel is reading a data sector or a servo sector (e.g., the AFE 30 and equalizer filter 64 may be configured to adjust the filtering of the read signal). In one embodiment, the sequence detector 68 may be used to detect both the user data of a data 25 sector and the servo data of a servo sector. In another embodiment, the sequence detector for detecting the servo data may be less complex than the sequence detector for detecting the user data in order to reduce the latency of the detection algorithm, thereby improving performance of the servo algorithm.

Any suitable data 40 may precede the servo preamble 22 in FIG. 2B, wherein in an embodiment shown in FIG. 4 the data comprises data of a data sector 70 preceding the servo preamble 22. The data of the data sector 70 may comprise random (i.e., unknown) user data that is written to the disk during a write operation. Even though the frequency content of the random user data may be different than the servo preamble 22, the random user data may still be used to initialize the AFE 30 which is why the servo gate is opened while the head is still 40 over the data sector 70. In one embodiment, the gap between the end of the data sector 70 and the beginning of the servo preamble 22 is erased (e.g., AC erased) so that the DC component of the read signal is substantially zero, thereby matching the DC component of the servo preamble 22.

In one embodiment, the data 40 that precedes the servo preamble 22 in FIG. 2B comprises at least part of the servo data 24. FIG. 5 shows an embodiment wherein the servo sector comprises a long format and a short format, wherein the short format facilitates writing a data sector up to the 50 beginning of the servo sector (when the read element 84 leads the write element **86** as shown in FIG. **6**A). The long format of the servo sector is read during non-write operations, such as during seeks and read operations. The servo sector can include a first preamble 72, a first sync mark 74, a high order 55 of a servo track ID 76, a second preamble 78, a second sync mark 80, and a low order servo track ID 82. While tracking a data track during a write operation, the high order servo track ID 76 does not change and therefore in one embodiment is not fully read when reading a servo sector. Instead, the short 60 format of the servo sector is read comprising the second preamble 78, the second sync mark 80, and the low order servo track ID 82. In this embodiment the servo gate may be opened while the read element 84 is over the high order servo track ID 76 as illustrated in FIG. 5 so that at least one of the 65 high order bits of the servo track ID may be read to initialize the AFE 30 of the servo read channel. This embodiment

4

reduces the length of the second preamble 78 by including just enough pattern to initialize the timing recovery circuit 32. The servo data 24 may comprise additional fields not shown in FIG. 5, such as a wedge ID that identifies the circumferential location of the head (the current servo sector). The wedge ID may be recorded in a split format similar to the track ID in FIG. 5, wherein a high order wedge ID may be recorded in the long format and a low order wedge ID may be recorded in the short format.

FIG. 6A shows an embodiment wherein an extended length servo preamble is initially written when servo writing the servo sectors to the disk. The extended length servo preamble is then read, for example, during a manufacturing procedure in order to improve the servoing operation. For example, the manufacturing procedure may learn servo compensation values (e.g., to compensate for a repeatable runout (RRO)) by reading the servo sectors, wherein the servo compensation values may then be written at the end of each servo sector as extended servo data. After executing the manufacturing procedure, data may be written to the data sectors, for example, during a defect scan of the data sectors or during normal write operations while the disk drive is deployed in the field. As shown in FIG. 6B, in one embodiment when a data sector is written preceding a servo sector the data sector overwrites at least part of the extended servo preamble. In this manner, there is no gap between the data sectors and the servo sectors shown in FIG. 4. This can avoid spurious, potentially random noise that may be generated when reading such a gap, as well as avoiding the need to erase such a gap. After overwriting the beginning part of the extended servo preamble with the data of a data sector as shown in FIG. 6B, during subsequent access operations the servo gate may be opened while the read element is over the data sector as shown in FIG. 6C in order to initialize the AFE 30 of the servo read channel.

Any suitable control circuitry may be employed to implement the flow diagrams in the above embodiments, such as any suitable integrated circuit or circuits. For example, the control circuitry may be implemented within a read channel integrated circuit, or in a component separate from the read channel, such as a disk controller, or certain operations described above may be performed by a read channel and others by a disk controller. In one embodiment, the read channel and disk controller are implemented as separate integrated circuits, and in an alternative embodiment they are fabricated into a single integrated circuit or system on a chip (SOC). In addition, the control circuitry may include a suitable preamp circuit implemented as a separate integrated circuit, integrated into the read channel or disk controller circuit, or integrated into a SOC.

In one embodiment, the control circuitry comprises a microprocessor executing instructions, the instructions being operable to cause the microprocessor to perform the flow diagrams described herein. The instructions may be stored in any computer-readable medium. In one embodiment, they may be stored on a non-volatile semiconductor memory external to the microprocessor, or integrated with the microprocessor in a SOC. In another embodiment, the instructions are stored on the disk and read into a volatile semiconductor memory when the disk drive is powered on. In yet another embodiment, the control circuitry comprises suitable logic circuitry, such as state machine circuitry.

The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method, event or process blocks may be omitted in some implementations. The methods and pro-

5

cesses described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described tasks or events may be performed in an order other than that specifically disclosed, or multiple may be combined in a single block or state. The example tasks or events may be performed in serial, in parallel, or in some other manner. Tasks or events may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently 10 than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.

While certain example embodiments have been described, these embodiments have been presented by way of example 15 only, and are not intended to limit the scope of the inventions disclosed herein. Thus, nothing in the foregoing description is intended to imply that any particular feature, characteristic, step, module, or block is necessary or indispensable. Indeed, the novel methods and systems described herein may be 20 embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions disclosed herein.

What is claimed is:

- 1. A disk drive comprising:
- a disk comprising a plurality of data tracks defined by servo sectors, where each data track comprises a plurality of data sectors, and each servo sector comprises a servo 30 preamble and servo data;
- a head comprising a read element and a write element; and control circuitry comprising a servo read channel configured to read the servo sectors, the servo read channel comprising an analog front end and a timing recovery 35 circuit, the control circuitry operable to:
- during an access operation position the head over a first data track; and
- during a revolution of the disk, access a first data sector sector:
 - read data preceding the servo preamble of a first servo sector in the first data track in order to initialize the analog front end of the servo read channel;
 - read at least part of the servo preamble to initialize the 45 timing recovery circuit of the servo read channel;
 - read at least part of the servo data of the first servo sector using the timing recovery circuit of the servo read channel,
 - wherein the data preceding the servo preamble comprises data of the first data sector in the first data track preceding the first servo sector.
- 2. The disk drive as recited in claim 1, wherein the control circuitry is further operable to overwrite at least part of the 55 servo preamble with the data of the first data sector to substantially eliminate a gap between the first data sector and the first servo sector.
- 3. The disk drive as recited in claim 1, wherein the data preceding the servo preamble comprises at least part of the 60 servo data of the first servo sector.
- 4. The disk drive as recited in claim 3, wherein accessing the first data sector comprises writing at least part of the first data sector proximate a beginning of the first servo sector.
- 5. The disk drive as recited in claim 3, wherein the data 65 preceding the servo preamble comprises at least part of a servo track identifier (ID).

- 6. The disk drive as recited in claim 5, wherein the data preceding the servo preamble comprises a high order bit of the servo track identifier (ID).
- 7. A method of operating a disk drive comprising a disk comprising a plurality of data tracks defined by servo sectors, where each data track comprises a plurality of data sectors, and each servo sector comprises a servo preamble and servo data, a head comprising a read element and a write element, and control circuitry comprising a servo read channel configured to read the servo sectors, the servo read channel comprising an analog front end and a timing recovery circuit, the method comprising:
 - during an access operation positioning the head over a first data track; and
 - during a revolution of the disk, accessing a first data sector of the first data track, and after accessing the first data
 - reading data preceding the servo preamble of a first servo sector in the first data track in order to initialize the analog front end of the servo read channel;
 - reading at least part of the servo preamble to initialize the timing recovery circuit of the servo read channel;
 - reading at least part of the servo data of the first servo sector using the timing recovery circuit of the servo read channel.
 - wherein the data preceding the servo preamble comprises data of the first data sector in the first data track preceding the first servo sector.
- 8. The method as recited in claim 7, further comprising overwriting at least part of the servo preamble with the data of the first data sector to substantially eliminate a gap between the first data sector and the first servo sector.
- 9. The method as recited in claim 7, wherein the data preceding the servo preamble comprises at least part of the servo data of the first servo sector.
- 10. The method as recited in claim 9, wherein accessing the of the first data track, and after accessing the first data 40 first data sector comprises writing at least part of the first data sector proximate a beginning of the first servo sector.
 - 11. The method as recited in claim 9, wherein the data preceding the servo preamble comprises at least part of a servo track identifier (ID).
 - 12. The method as recited in claim 11, wherein the data preceding the servo preamble comprises a high order bit of the servo track identifier (ID).
 - 13. A disk drive comprising:
 - a disk comprising a plurality of data tracks defined by servo sectors, where each data track comprises a plurality of data sectors, and each servo sector comprises a servo preamble and servo data;
 - a head comprising a read element and a write element; and control circuitry comprising a servo read channel comprising an analog front end and a timing recovery circuit, the control circuitry operable to:
 - during an access operation position the head over a first data track; and
 - during a revolution of the disk, access a first data sector of the first data track, and after accessing the first data
 - read data preceding the servo preamble of a first servo sector in the first data track in order to initialize the analog front end of the servo read channel;
 - read at least part of the servo preamble to initialize the timing recovery circuit of the servo read channel;

read at least part of the servo data of the first servo sector using the timing recovery circuit of the servo read channel.

wherein the data preceding the servo preamble comprises at least part of the servo data of the first servo 5 sector.

14. A method of operating a disk drive comprising a disk comprising a plurality of data tracks defined by servo sectors, where each data track comprises a plurality of data sectors, and each servo sector comprises a servo preamble and servo 10 data, a head comprising a read element and a write element, and control circuitry comprising a servo read channel comprising an analog front end and a timing recovery circuit, the method comprising:

during an access operation positioning the head over a first 15 data track; and

during a revolution of the disk, accessing a first data sector of the first data track, and after accessing the first data sector:

reading data preceding the servo preamble of a first 20 servo sector in the first data track in order to initialize the analog front end of the servo read channel;

reading at least part of the servo preamble to initialize the timing recovery circuit of the servo read channel; and

reading at least part of the servo data of the first servo sector using the timing recovery circuit of the servo read channel,

wherein the data preceding the servo preamble comprises at least part of the servo data of the first servo 30 sector.

* * * * *

8